Introduction to phylogenetics

Thibaut Jombart

15 December 2017

MRC Centre for Outbreak Analysis and Modelling Imperial College London

Outline

Phylogenies...

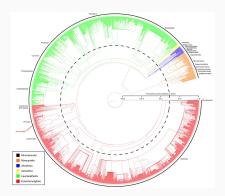
Distance trees

Parsimony

Likelihood/Bayesian

Uncertainty

Pitfalls & best practices


Phylogenetics: from the origins...

C. Darwin, Notebook, 1837.

'From the first growth of the tree, many a limb and branch has decayed and dropped off; and these fallen branches of various sizes may represent those whole orders, families, and genera which have now no living representatives, and which are known to us only in a fossil state.'

Phylogenetics: ...to the present

Bininda-Emonds *et al.*, 2007, Nature.

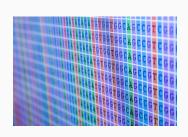
- phylogenetic trees are part of the standard toolbox of genetic data analysis
- represent the evolutionary history of a set of (sampled) taxa

And the main difference is...

And the main difference is...

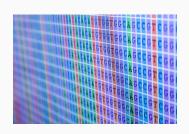
Current trees look better!

And the main difference is...



Current trees look better!

(and some other minor differences)


About the minor differences...

- DNA sequencing revolution
- huge data banks freely available (e.g. GenBank)
- easier, cheaper, faster to obtain DNA sequences
- increasing number of full genomes available

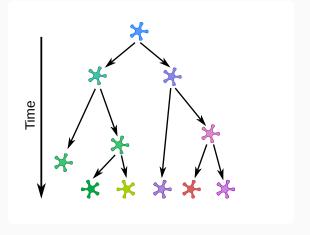
About the minor differences...

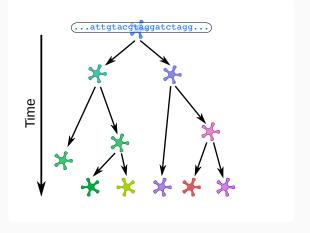
- DNA sequencing revolution
- huge data banks freely available (e.g. GenBank)
- easier, cheaper, faster to obtain DNA sequences
- increasing number of full genomes available

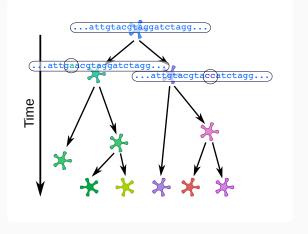
Different ways to exploit this information.

Outline

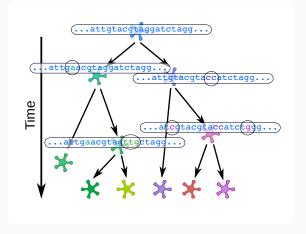
Phylogenies...

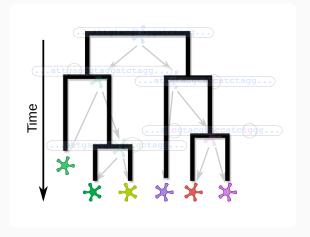

Distance trees

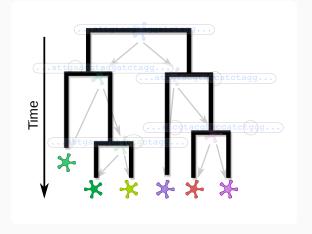

Parsimony


Likelihood/Bayesian

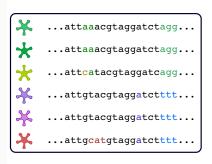
Uncertainty


Pitfalls & best practices

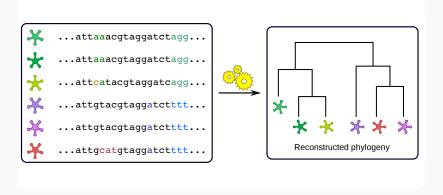




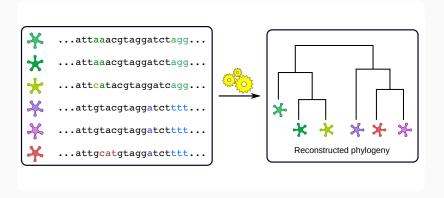
Substitution: replacement of a nucleotide (e.g. $a \rightarrow t$)

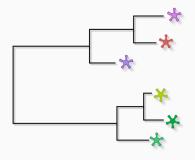


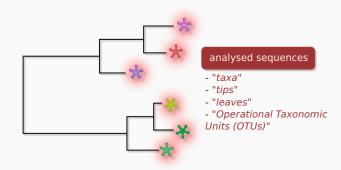
 $\textbf{Substitution} \hbox{: replacement of a nucleotide (e.g. } a \rightarrow t)$



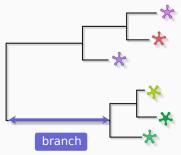
Substitution patterns reflect the evolutionary history


Using substitution patterns to reconstruct the evolutionary history

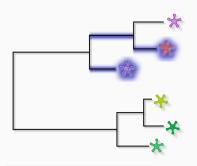

Using substitution patterns to reconstruct the evolutionary history

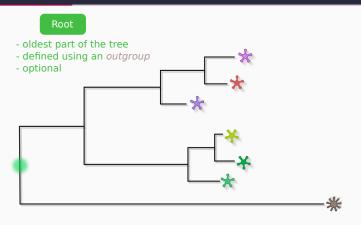


Using substitution patterns to reconstruct the evolutionary history



Phylogenetics aim to reconstruct evolutionary trees (*phylogenies*) from genetic sequence data.




- "edge"
- length = amount of evolution (**not time**, as a rule)
- length is optional

distances between tips

- "patristic" distance: sum of branch lengths
- other measures of distance/dissimilarity
- vertical axis meaningless

- oldest part of the tree
- defined using an outgroup
- optional

How to we build them?

Prepare data

• align sequences: alignment software + manual refinement

Prepare data

• align sequences: alignment software + manual refinement

Build the tree

- distance-based methods
- maximum parsimony
- likelihood-based methods (ML, Bayesian)

Prepare data

• align sequences: alignment software + manual refinement

Build the tree

- · distance-based methods
- maximum parsimony
- likelihood-based methods (ML, Bayesian)

Analyse the tree

- assess uncertainty
- test phylogenetic signal
- model trait evolution
- ..

Prepare data

• align sequences: alignment software + manual refinement

Build the tree

- · distance-based methods
- maximum parsimony
- likelihood-based methods (ML, Bayesian)

Analyse the tree

- assess uncertainty
- test phylogenetic signal
- model trait evolution
- ..

Outline

Phylogenies...

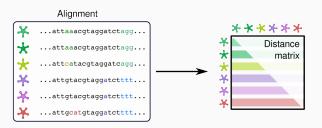
Distance trees

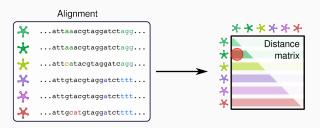
Parsimony

Likelihood/Bayesian

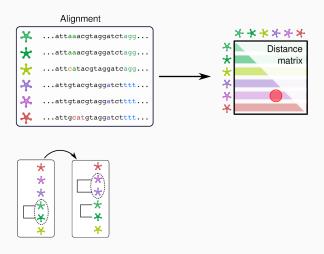
Uncertainty

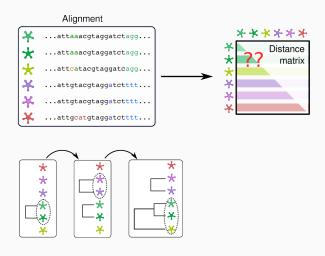
Pitfalls & best practices

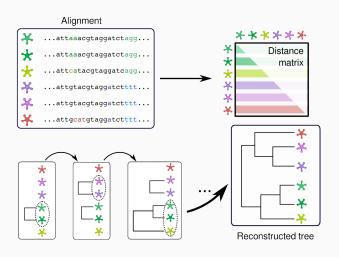

Approaches relying on **agglomerative clustering** algorithms (e.g. Single linkage, UPGMA, Neighbor-Joining)

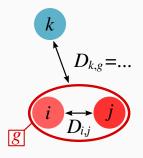

Rationale

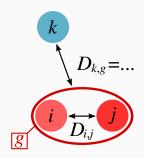
- 1. compute pairwise genetic distances D
- 2. group closest sequences
- 3. update \mathbf{D}
- 4. go back to 2) until all sequences are grouped


Alignment

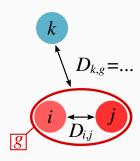




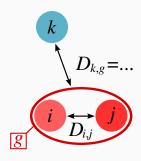

Distance-based phylogenetic reconstruction


Distance-based phylogenetic reconstruction

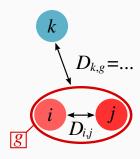
Hierarchical clustering:



Hierarchical clustering:


ullet single linkage: $D_{k,g} = \min(D_{k,i},D_{k,j})$

Hierarchical clustering:


- ullet single linkage: $D_{k,g} = \min(D_{k,i},D_{k,j})$
- ullet complete linkage: $D_{k,g} = \max(D_{k,i},D_{k,j})$

Hierarchical clustering:

- ullet single linkage: $D_{k,g} = \min(D_{k,i},D_{k,j})$
- $\bullet \ \ \text{complete linkage:} \ D_{k,g} = \max(D_{k,i},D_{k,j}) \\$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$

Hierarchical clustering:

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- ullet complete linkage: $D_{k,g} = \max(D_{k,i},D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$

Neighbor joining:

Transforms original distances to account for heterogeneous rates of evolution.

Distance-based phylogenetic reconstruction

Advantages

- simple
- flexible (many distances and clustering algorithms)
- fast and scalable (applicable to large datasets)

Distance-based phylogenetic reconstruction

Advantages

- simple
- flexible (many distances and clustering algorithms)
- fast and scalable (applicable to large datasets)

Limitations

- sensitive to distance/clustering chosen
- evolutionary rates are not estimated
- no measure of uncertainty for the tree obtained

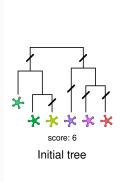
Outline

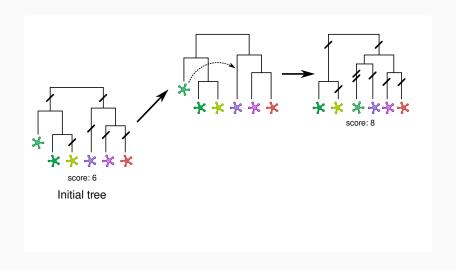
Phylogenies...

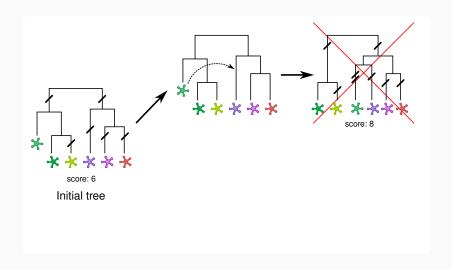
Distance trees

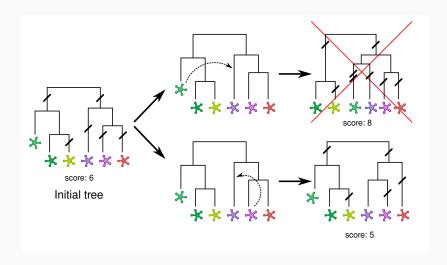
Parsimony

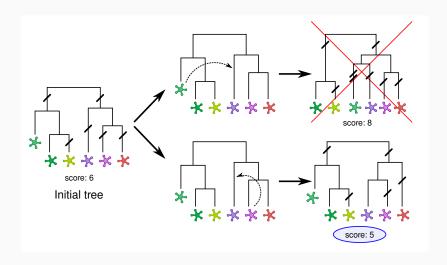
Likelihood/Bayesian


Uncertainty


Pitfalls & best practices


Approaches relying on finding the tree with the smallest number of character changes (substitutions)


Rationale


- 1. start from a pre-defined tree
- 2. compute initial parsimony score
- 3. permute branches and compute parsimony score
- 4. accept new tree if the parsimony score is improved
- 5. go back to 3) until convergence

Advantages

- applicable to any discontinuous characters (not just DNA)
- intuitive explanation: 'simplest' evolutionary scenario

Advantages

- applicable to any discontinuous characters (not just DNA)
- intuitive explanation: 'simplest' evolutionary scenario

Limitations

- evolutionary rates are not estimated
- no measure of uncertainty for the tree obtained
- computer-intensive
- different types of substitutions ignored
- evolution not necessarily parsimonious
- sensitive to heterogeneous rates of evolution (long branch attraction)

Outline

Phylogenies...

Distance trees

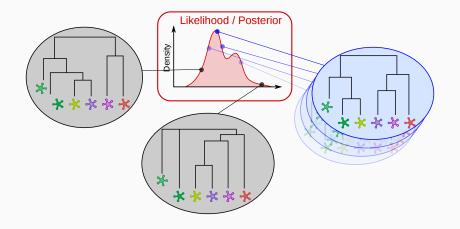
Parsimony

Likelihood/Bayesian

Uncertainty

Pitfalls & best practices

Approaches relying on a model of sequence evolution:


- ML: find tree and evolutionary rates with highest likelihood
- Bayesian: find tree and evolutionary rates to posterior probability

Approaches relying on a model of sequence evolution:

- ML: find tree and evolutionary rates with highest likelihood
- Bayesian: find tree and evolutionary rates to posterior probability

Rationale

- 1. start from a pre-defined tree
- 2. compute initial likelihood/posterior
- permute branches, sample new parameters and compute likelihood/posterior
- 4. accept new tree and parameters based on likelihood/posterior improvement
- 5. go back to 3) until convergence

Advantages

- very flexible
- consistent with a model of evolution
- statistically consistent (model comparison)
- parameter estimation
- ullet (Bayesian) several trees o measure of uncertainty

Advantages

- very flexible
- consistent with a model of evolution
- statistically consistent (model comparison)
- parameter estimation
- ullet (Bayesian) several trees o measure of uncertainty

Limitations

- computer-intensive
- choice of the model of evolution
- (ML) no measure of uncertainty for the tree obtained
- (Bayesian) need to find a consensus tree

Outline

Phylogenies...

Distance trees

Parsimony

Likelihood/Bayesian

 ${\sf Uncertainty}$

Pitfalls & best practices

Main issue: assess the uncertainty of the tree topology / individual nodes

Main issue: assess the uncertainty of the tree topology / individual nodes

Approaches

 ML: model selection to compare trees (whole tree)

Main issue: assess the uncertainty of the tree topology / individual nodes

Approaches

- ML: model selection to compare trees (whole tree)
- Bayesian methods: between-samples variability (individual nodes)

Main issue: assess the uncertainty of the tree topology / individual nodes

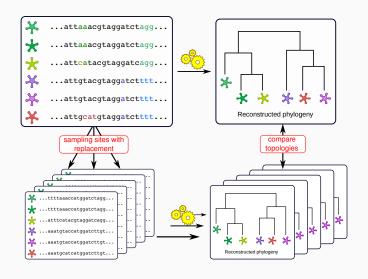
Approaches

- ML: model selection to compare trees (whole tree)
- Bayesian methods: between-samples variability (individual nodes)
- any method: bootstrap (individual nodes)

Main issue: assess the uncertainty of the tree topology / individual nodes

Approaches

- ML: model selection to compare trees (whole tree)
- Bayesian methods: between-samples variability (individual nodes)
- any method: bootstrap (individual nodes)



- assess variability due to sampling the genome and conflicting signals
- relies on analysing resampled datasets

- assess variability due to sampling the genome and conflicting signals
- relies on analysing resampled datasets

Rationale

- 1. obtain a reference tree
- 2. resample the sites with replacement
- 3. obtain a tree for the resampled dataset
- 4. go back to 2) until the desired number of bootstrapped trees is attained
- 5. compute the frequency of each bifurcation of the reference tree occuring in bootstrapped trees

Advantages

- standard
- simple to implement

Advantages

- standard
- simple to implement

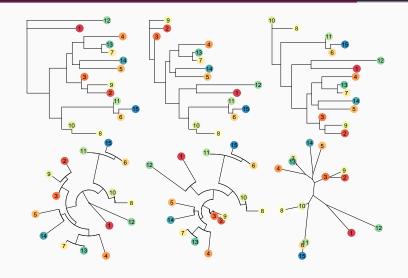
Limitations

- possibly computer-intensive
- assumes that the genome has been sampled randomly (often wrong)

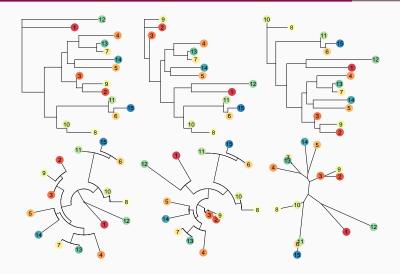
Outline

Phylogenies...

Distance trees

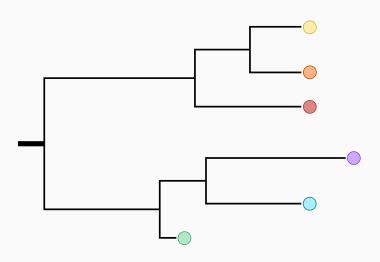

Parsimony

Likelihood/Bayesian

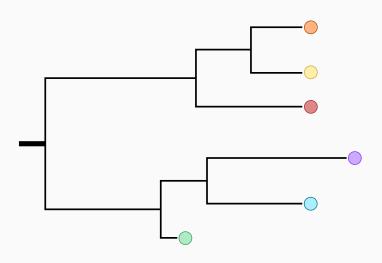

Uncertainty

Pitfalls & best practices

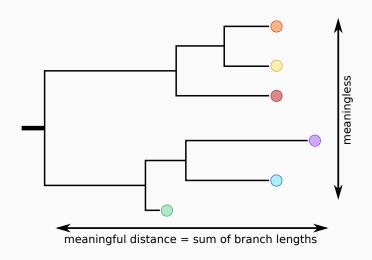
Plotting trees as rooted

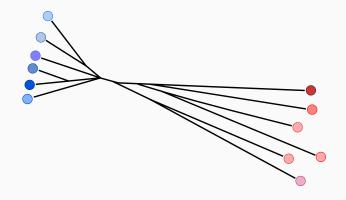


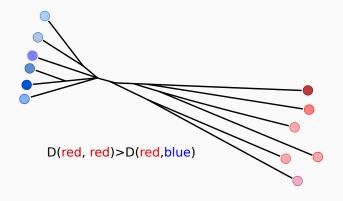
Plotting trees as rooted

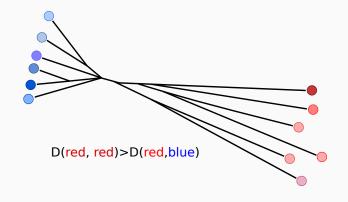


Never plot an unrooted tree as rooted.

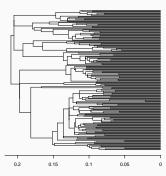

Interpreting distances


Interpreting distances

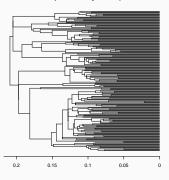

Interpreting distances


The paradox of divergent clusters

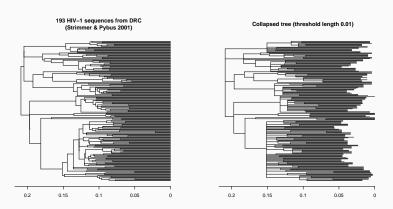
The paradox of divergent clusters


The paradox of divergent clusters

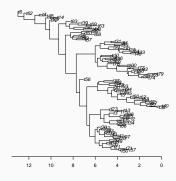
MRCA and genetic distances may give different information.


Taking uncertainty into account

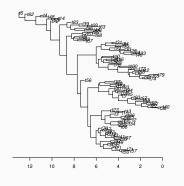
Taking uncertainty into account

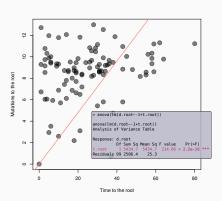

193 HIV-1 sequences from DRC (Strimmer & Pybus 2001)

Collapsed tree (threshold length 0.01)

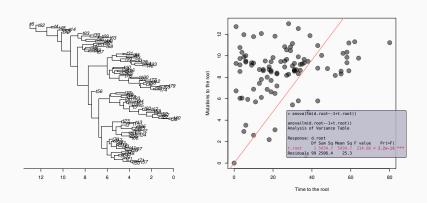


Taking uncertainty into account




At best, the tree is an estimate of the likely evolutionary history of the taxa studied.

(Over, Mis)Interpreting temporal trends



(Over, Mis)Interpreting temporal trends

(Over, Mis)Interpreting temporal trends

"Time trees" only make sense under a near-perfect molecular clock.

Outline

Phylogenies...

Distance trees

Parsimony

Likelihood/Bayesian

Uncertainty

Pitfalls & best practices

Many things can be done with trees

• estimate divergence time

- estimate divergence time
- model trait evolution (phylogenetic comparative method)

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..
- and also, other approaches than phylogenetics to analyse genetic data

